示波器是干什么用的呢 - 21ic电子网
登 录
注 册
钱 包
手机版
模拟
首页
技术/专栏
通信技术
显示光电
单片机
测试测量
智能硬件
汽车电子
消费电子
工业控制
医疗电子
电路图
物联网
模拟
专访
电源
芯闻号
嵌入式
技术学院
公众号精选
厂商动态
新基建
中国芯
全部专栏>
阅读
新闻
新品
应用
会展
社区互动
论坛
外包
招聘
问答
课程
直播
公开课
在线研讨会
TI在线培训中心
设计资源
下载
电路图
计算器
datasheet
厂商
活动
文章
专栏
论坛
下载
外包
Datasheet
当前位置:首页
>
模拟
> 模拟技术
原创 示波器是干什么用的呢
时间:2024-03-10 14:50:02
关键字:
示波器
交流电流
脉冲电流
手机看文章扫描二维码随时随地手机看文章
[导读]示波器是一类能够 用于检测交流电流或脉冲电流波的形态的仪器设备。示波器由电子管放大仪、扫描振荡器、阴极射线等组合而成。
示波器是一类能够 用于检测交流电流或脉冲电流波的形态的仪器设备。示波器由电子管放大仪、扫描振荡器、阴极射线等组合而成。示波器了除能够
监测电流量的波形外,能够 测量频率、电压强度等,凡能够 变成电效用的周期物理流程都能够用示波器来进行监测。
示波器是一类用处非常普遍的电子检测仪器。它可以把人眼看不到的电子信号转换成看得到的影像,有利于大家研究各种各样电现象的转变流程。示波器运用狭小的、由快速电子组合而成的电子束,打在涂成荧光成分的屏上面,就可形成很小的光斑。在被测信号的功能下,电子束就仿佛一杆笔的笔头,能够
在屏上面勾画出被测信号的瞬时值的转变曲线。运用示波器能查看各种各样不一样信号波幅随时长转变的波形曲线,能够
用它检测各种各样不一样的电量,如电压、电流量、频率、相位差、调幅度等。
示波器由探头、耦合板和信号发生器组成,其中探头的功能是将输入的直流电变成幅度可变的交流电,以便于测试;耦合板的功能是使探头输出的交流电按一定规律变化;信号源的功能是把被测信号变换成幅度可变的脉冲电压或电流。
一、示波器的原理:
1、工作原理:
在示波器的内部有一个高精度振荡电路(晶体振荡电路),该振荡电路将来自被测信号的瞬时值进行放大和整形处理后产生正弦波形输出到输人端。
2、工作过程:
当输入的直流电压达到某一阈值时触发放大器进入饱和状态,此时输入端的电压幅值不再随时间变化而变化了(即截止状态),因此需要使用一个分压电阻将过大的直流电压限制在一定的范围内。
当输入的正弦波的频率超过某一阈值时触发放大器处于饱和状态下产生的正弦波的振幅会急剧下降甚至为零(也就是截止状态)。
如果输入的交流电的频率某一阈值的倍数时则不产生任何反应。
3、应用范围:
主要用于测量各种电量参数如电压、电流等;也可用于测量非电量参数如功率、频率、相位等。此外还可用来做精密校准工具及作频谱分析用仪器等等。
示波器(英语:oscilloscope)是一种能够显示电压信号动态波形的电子测量仪器。它能够将时变的电压信号,转换为时间域上的曲线,原来不可见的电气信号,就此转换为在二维平面上直观可见光信号,因此能够分析电气信号的时域性质。更高级的示波器,甚至能够对输入的时间信号,进行频谱分析,反映输入信号的频域特性。
外观
一个典型的示波器通常是盒状屏幕,有多个输入连接,示波器至少包括探头、显示器和控制面板三部分。电压信号通过探头连接到示波器的输入端口,经过处理之后的波形就显示在显示器上。显示器一般为长方形,偶尔也有圆形,在表面标记有垂直的网格坐标。传统的示波器控制面板一般在示波器前部,分布有多个旋钮、按钮或开关,用于调整参数,目前最新的示波器——平板示波器采用全触控屏幕操作,外形如同iPad。
分类
示波器主要可以分为模拟示波器与数字示波器两类。
模拟示波器主要基于阴极射线管,打出的电子束通过水平偏置和垂直偏置系统,打在屏幕的荧光物质上显示波形。
数字示波器主要是通过ADC将模拟数字离散化并存入存储器,通过CPU或专用芯片进行处理后在屏幕上进行显示。原有的数字存储示波器对波形的捕获率较慢,随着技术及专用芯片的发展,现有数字存储示波器的波形捕获率已经可以达到每秒100万次,高于模拟示波器的40万次。
数字示波器又可分为
数字存储示波器(DSO,Digital Storage
Oscilloscope):将信号数字化后再建波形,具有记忆、存储被观测信号的功能,可以用来观测和比较单次过程和非周期现象、低频和慢速信号,以及不同时间不同地点观测到的信号。
数字荧光示波器(DPO,Digital Phosphor Oscilloscope):通过多层次辉度或彩色可显示长时间内信号。
混合信号示波器(MSO,Mixed Signal
Oscilloscope):把数字示波器对信号细节的分析能力和逻辑分析仪多沟道定时测量能力组合在一起,可用于分析数模混合信号交互影响。
1. 观察信号波形
示波器最主要的作用就是能够观察电路中的信号波形。通过示波器,我们可以清晰地看到信号的波形、频率、幅度等特征,从而判断信号的质量和性能。例如,在设计电路时,我们需要确定信号的频率、幅度等参数,就需要用示波器来观察信号波形,从而调整电路以满足要求。
2. 测量电信号的参数
示波器还能够测量电信号的各种参数,如电压、电流、频率、相位差等。通过示波器,我们可以精确地测量这些参数,从而对电路进行优化和调整。例如,在测试电源电压时,我们可以使用示波器来测量电源输出的波形和电压值,以确保电源的稳定性和安全性。
3. 分析故障原因
当电子设备出现故障时,我们可以使用示波器来分析故障原因。通过观察信号波形和测量信号参数,我们可以确定故障出现的位置和原因,并进行修理和维护。例如,在音响设备中,如果发现声音有杂音或变形,我们可以使用示波器来观察音频信号波形,从而确定故障原因。
4. 检测信号质量
在通信领域中,示波器也被广泛应用于检测信号质量。通过观察信号波形和测量信号参数,我们可以判断信号的质量是否符合要求,并进行相应的调整。例如,在无线通信领域,我们可以使用示波器来检测信号的幅度、频率等参数,以确保信号传输的可靠性和稳定性。
欲知详情,请下载word文档 下载文档
来源:潜力变实力
声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读
[模拟技术]
示波器的调节与使用误差分析
电源未接通;辉度旋钮未调节好;X,Y轴移位旋钮位置调偏;Y轴平衡电位器调整不当,造成直流放大电路严重失衡。示波器维修
关键字:
示波器
电源
电位器
[泰克科技(Tektronix)]
【做信号链,你需要了解的高速信号知识(一)】为什么要使用LVDS或JESD204B标准?
我们在设计高速接口芯片时,到底应该使用LVDS,还是CML(JESD204)呢?
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事
当需要同步捕获许多信号时,实现示波器同步有多种办法。本文介绍了使用5和6系列B MSO示波器以及TekScope PC分析软件同步多示波器测量系统的三种方法。
关键字:
示波器
测试测量
[测试测量]
万用表的使用方法及注意事项
万用表是一种极为多功能的测量仪表,广泛应用于电气、电子、通信、维修等多个领域。它的多功能性体现在能够测量不同类型的电学参数,包括直流电流、直流电压、交流电流、交流电压、电阻、音频电平,以及某些高级万用表还能测量交流电流、...
关键字:
万用表
交流电流
[泰克科技(Tektronix)]
【探索前沿 测试为先】低电压测试,AI技术热潮背后算力核心的重要支撑
泰克的MSO6B系列示波器的底噪性能非常优异,底噪的有效值在20MHZ带宽下低至8.68uV,1G带宽下低至51.5uV,是测量电源纹波和噪声的最佳选择。
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
【泰克应用分享】如何实现MSO示波器更多通道的测试
本文以泰克4,5和6系列MSO为例,说明了多示波器同步的程序和原理。
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
MIMO雷达系统测试工具和技术
泰克DPO70000SX或MSO/DPO70000DX系列示波器,是一种理想的仪器,专为实现宽带宽和相位一致而设计。它支持中心频率、频谱宽度和分辨带宽(RBW)等参数的独立设置,与用于多通道控制和分析的SignalVu...
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
凭借800V电动汽车动力总成设计解决“里程焦虑”问题
在验证和诊断电动汽车牵引电机和逆变器的设计问题时,示波器能够发挥举足轻重的作用。泰克可凭借旗下的4系列B MSO、5系列B MSO和6系列B MSO示波器,为工程师提供宽禁带双脉冲测试(DPT,简称双脉冲测试)解决方案,...
关键字:
示波器
电动汽车
[泰克科技(Tektronix)]
示波器12bit“芯”趋势,如何实现更高测量精度?
本文重点介绍泰克4、5和6系列MSO设计者实现更高分辨率采集细节所采用的技术,另外还介绍了有效位数(ENOB)指标,以及这一重要性能指标的作用和局限性。
关键字:
示波器
测试测量
[是德科技]
是德科技推出带宽超过50 GHz示波器探头
是德科技(Keysight Technologies, Inc.)推出 InfiniiMax 4 系列高带宽示波器探头,将其高频探头产品的带宽扩展到 52 GHz。InfiniiMax 4 系列采用了工作频率超过 50...
关键字:
示波器
探头
半导体
[ 鼎阳科技]
鼎阳科技发布8GHz带宽12-bit高分辨率示波器,树立国产示波器新标杆
2024年1月23日,鼎阳科技正式发布8GHz带宽高分辨率示波器,树立了国产高分辨率示波器的新标杆。此次发布的示波器为SDS7000A系列推出的新型号SDS7804A,具备12-bit高精度ADC,1Gpts存储深度,支...
关键字:
示波器
ADC
第三代半导体
[宜普电源转换公司]
EPC GaN FET可在数纳秒内驱动激光二极管,实现75~231A脉冲电流
EPC推出三款评估板,分别是EPC9179、EPC9181和EPC9180,它采用75 A、125 A、231 A脉冲电流激光驱动器和通过车规级AEC-Q101认证的EPC GaN FET - EPC2252、EPC22...
关键字:
脉冲电流
激光二极管
评估板
[泰克科技(Tektronix)]
泰克客户服务日引入新角色,全新4B混合信号示波器激发探讨热潮
在刚刚过去的一个月,泰克展开了一系列令人兴奋的全新混合信号示波器演示活动,为客户带来了引领技术潮流的4B MSO全新体验。
关键字:
示波器
[泰克科技(Tektronix)]
从模拟示波器到下一代模拟信号测量,示波器创新经过怎样的历程?
从1946年泰克诞生,到2024年新年伊始,示波器从第一台商用示波器到模拟示波器再到数字示波器,以及如今的下一代模拟信号测量不断精益求精,泰克都做了什么?在辞旧迎新之际,我们一起探索泰克创新历程,寻迹示波器发展趋势。
关键字:
示波器
[测试测量]
示波器的使用方法?
示波器是一种常用的电子测量仪器,用于观测和分析各种信号波形。通过示波器,可以观察信号的动态变化过程,测量信号的幅度、频率、相位等参数。本文将详细介绍示波器的使用方法,帮助用户更好地应用示波器进行信号分析。
关键字:
示波器
电子测量仪器
信号波形
[泰克科技(Tektronix)]
4系列B MSO混合信号示波器,新在哪里?
Tektronix 4系列B MSO混合信号示波器具有新的处理器、操作系统等特点。
关键字:
示波器
测试测量
[泰克科技(Tektronix)]
新一代示波器ASIC,打造全能信号捕手
全新4系列B MSO配备新一代示波器ASIC,主要具有更高性能ADC(12位)、高清晰度波形显示、改进的低噪声和高增益模拟前端,以及消除固有噪声的硬件滤波器四个方面优势。
关键字:
示波器
[泰克科技(Tektronix)]
聚焦第三代半导体,泰克荣获“2023行家极光奖”年度优秀产品奖
“2023行家极光奖”颁奖典礼于12月14日在深圳隆重举行,数百家SiC&GaN企业代表出席了本次活动,共同见证了第三代半导体产业的风采。业内领先的测试与测量解决方案提供商泰克科技,5系列B MSO混合信号示波器荣获年...
关键字:
示波器
[泰克科技(Tektronix)]
测试为先,MSO 4B“以多变 应万变”轻松应对多元挑战
泰克MSO 4B示波器不仅仅是一个测试工具;更重要的是,它改变了游戏规则,充分提高效率的同时,推动创新的边界,解决复杂的设计挑战,并毫不费力地进行协作,使用泰克的MSO 4B体验嵌入式系统测试的未来。
关键字:
示波器
测试测量
[ 鼎阳科技]
鼎阳科技发布SDS800X HD系列数字示波器,打造专业级示波器新标杆
2023年12月12日,鼎阳科技发布SDS800X HD系列高分辨率数字示波器。这款高分辨率数字示波器以“玩点专业的”作为主要宣传语,着重面向广大电子爱好者及个人工程师,以1980的起价直接重新定义入门级专业数字示波器,...
关键字:
示波器
数字示波器
厂商专栏
厂商文章
5156篇文章
贸泽电子
768篇文章
ADI
716篇文章
意法半导体
709篇文章
英飞凌
430篇文章
是德科技
311篇文章
热门文章
中国工程师在美国被捕:涉嫌TPU/GPU泄密!
美国要求字节跳动在165天内剥离TikTok,官方回应!
气炸了!程序员因出现Bug,被公司要求归还4万多年终奖
曝华强北Vision Pro售价仅一千,老板:便宜不丢人!
破产清算!又一PCB大厂没挺过春节…
疯了!整个亚洲疯抢RTX 4090倒卖中国,简直暴利!
MCU巨头降薪20%!
中兴小米大裁员,京东涨薪!
突发!又一老牌PCB大厂破产清算
重磅!华为宣布与淘宝合作
编辑精选
更多
论坛活动
泰克全新4系列B MSO,与各种测试挑战say goodbye
(有奖)经常被低阻抗设计困扰?村田这份白皮书为您排忧解难
华邦存储专题来袭,拼图赢好礼~
东芝精品参考设计专题
更多
论坛热帖
十大技术帖
十大生活帖
有懂高压电源的吗?请进
如何在SecureCRT中设置日志带时间戳?
GD32驱动软件IIC---OLED
干货 | 电路中为何需要串联小电阻?这样解释就懂了
有关HC32F460芯片DMA多个通道同时使用的问题
STM32CubeIDE升级后 printf 大坑
请问XHCODE AWD如何设置
通过RTT输出数据和直接输出的数据不一致
隔空手势识别测试系统
这个板载的调试器的驱动和MDK芯片包哪里下载?
新冠又开始反扑
出国留学花200万回国月薪4000元
末位淘汰大家都听说过,首位保留有人听说过么
又是一年315时——你买到过那些假货
平时工作比较忙大家有什么比较好的减肥方式?
欢迎接龙——附庸风雅一番
家庭需要自备灭火器吗,大家有没有买家用灭火器?
男生月薪一万一年存10万
头发越来越少,剪发却越来越贵
幼儿园就在单位楼下,带娃上班是怎样一种体验?
技术子站
更多
资料下载
STM32F103ZET6(中文参考手册)
OLED显示屏STM32F103C8T6_IIC例程
黑马程序员模拟电路
APM32E103ZE-MINIBOARD V1.0 开发板原理图
Multisim仿真100例.
PDF to CAD
LS5120 开发包,NFC SDK HDK
CS1622 LCD驱动器产品说明书
汽车电子美标SAE J1939协议 最全的中文版协议
OLED显示屏C51
更多
技术学院
什么是普通放大器?什么是仪表放大器?二者有何区别?
什么是放大器?差分放大器与单端放大器有什么区别?
笔记本怎么设置密码?如何判断笔记本散热?
什么是无线电遥控技术?无线电遥控器介绍!
无线遥控器编码方式了解吗?如何处理无线遥控器故障?
什么是工业无线遥控器?工业无线遥控器遥控距离受什么影响?
TrendForce集邦咨询:HBM3原由SK海力士独供,三星获AMD验证通过将急起直追
TrendForce集邦咨询:2023年第四季全球前十大晶圆代工业者营收季增7.9%,全年达1,115.4亿美元
21ic官方微博
文章
专栏
论坛
下载
外包
Datasheet
阅读
充电吧
21ic专访
编辑视点
专题
会展
高端访谈
技术
通信技术
单片机
测试测量
智能硬件
汽车电子
消费电子
工业控制
医疗电子
开发板
物联网
模拟
电源
嵌入式
资讯
新品
应用
技术专访
基础知识
新基建
中国芯
互动
论坛
外包
博客
招聘
课程
公开课
在线研讨会
TI在线培训
资源
下载
电路图
Datasheet
在线计算器
厂商
21ic 官方微信
嵌入式微处理器
电源系统设计
手机21ic
本站介绍 | 申请友情链接 | 欢迎投稿 | 隐私声明 | 广告业务 | 网站地图 | 联系我们 | 诚聘英才
ICP许可证号:京ICP证070360号 21IC电子网 2000- 版权所有
京ICP备11013301号
京公网安备 11010802024343号
关闭
正确使用示波器_示波器 使用教程-CSDN博客
正确使用示波器
最新推荐文章于 2023-03-07 00:51:48 发布
一路带飞
最新推荐文章于 2023-03-07 00:51:48 发布
阅读量4.9w
收藏
806
点赞数
103
分类专栏:
硬件
文章标签:
硬件工程
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Yiludaifei/article/details/120171596
版权
硬件
专栏收录该内容
24 篇文章
48 订阅
订阅专栏
今天我们就来聊聊“使用示波器的正确姿势”
我们都知道万用表(又称欧姆表)是工程师最常用的调试电路的工具,但万用表的功能非常有局限,如果你需要观察一些随时间变化的参量,比如频率、幅度、噪声等等,示波器就是最好的选择。
那我们先看看示波器是什么?主要的用途是什么?
示波器的主要用途就是将随时间变化的电信号以图形的方式画出来,多数的示波器是用时间为x轴,电压为y轴产生的二维图形。
横轴为时间,纵轴为电压
在示波器屏幕周边的控制按钮可以调节图形的显示比例,显示的横轴和纵轴刻度都能够调节,这样就可以对信号在时间和幅度两个维度进行缩放查看,还有可以调节“触发”的旋钮,帮助“稳定”波形的显示。
除了这些基础的功能之外,示波器还能够帮助工程师快速定量被测信号的频率、幅度以及其它的波形参数。总之示波器可以测试基于时间和基于电压的参数,如下:
基于时间的参数 : 频率和周期、占空比、上升时间和下降时间等
电压参数 : 幅度、最大电压、最小电压、平均电压等
那什么时候用示波器?
在调试电路的输入、输出以及中间系统的时候用以确定信号的频率和幅度,基于这些信息可以判断电路的工作是否正常。
确定电路中噪声的大小
判断波形的形状 – 正弦波、方波、三角波、锯齿波、复合波形等等
测量两个不同信号的相位差
示波器的选用依据
示波器的功能、性能、价格差别都非常大,示波器的选型需要根据使用的场景(考虑到将来所有可能的项目需求)并结合自己的预算进行选择,主要需要考虑的参数如下:
数字 vs. 模拟 – 早期的模拟示波器将输入的电压以电子束的方式直接打在显示屏上;数字示波器内部由微处理器控制,通过模数转换器(ADC)将输入的模拟信号进行量化,并经过一系列的处理后将量化的波形显示出来。一般来讲,早期的模拟示波器带宽相对较低,功能较少,但响应时间也许更快,且没有数字示波器由于采样带来的混叠频率,随着科技的发展目前主流的都已经是数字示波器,除非特殊的场合需要模拟示波器;
通道数 – 可以同时处理的模拟信号输入的数量,2通道最为常见,其次是4通道;
带宽 – 能够可靠测量的模拟信号的频率范围,一般以MHz为单位来表示,下面的图可以看出来如果模拟带宽不够对被测波形的影响。
模拟带宽对信号波形的影响
**取样率 ** – 这是数字示波器特有的指标,反映了对模拟信号以每秒多少次的速度进行采样。有的多通道示波器,当多个通道同时使用的时候采样率可能会降低,一般以MSa/S来表示,示波器的最高采样率应该大于4倍的模拟带宽。
上升时间 – 示波器的上升时间决定了其能够测量的最快的上升脉冲,这个指标与带宽高度相关,可以用这个公式来换算:Rise Time = 0.35 / Bandwidth.
最大输入电压 – 每种电子产品都有其能够承受电压的最高极限,示波器的最高输入电压指的是,如果输入的信号电压超过这个值,极有可能会损毁示波器。
分辨率 – 表征了对输入电压的量化精度,一般高速的示波器都采用8bit的高速ADC对模拟信号进行量化采样。
垂直灵敏度 – 这个值表征了垂直显示的电压量程的最小和最大值,单位是伏/格。
时间基准 – 表征了水平的时间轴的灵敏度范围,单位是秒/格
输入阻抗 – 如果被测信号为很高频率的信号,即便是非常小的阻抗(电阻、电容、电感)叠加在电路上都会对信号带来比较大的影响。每一个示波器都会对测量的电路增加一定的阻抗,这个阻抗就是输入阻抗,它一般是比较大的电阻(>1 MΩ)与比较小的电容(在pF的范围)并联 (||). 在测量非常高频率的信号的时候输入阻抗的影响就变得比较明显,可以通过调节使用的探头来进行补偿。
以Rigol的DS1204B为例,看看这个示波器的各项指标:
特性值带宽200 MHz取样率2 GSa/s上升时间<1.75 ns通道数4最大输入电压1000 V分辨率8-bit垂直灵敏度2mV/div - 10V/div时间基准1ns/div - 50s/div输入阻抗1 MΩ ± 2%
理解了这些参数的意义,对于你选用合适的示波器非常重要,下一步我们谈一下如何正确使用示波器。
示波器的组成
各种示波器的功能基本上都是一样的,它们都有一些共同的属性 - 显示、水平线、垂直线、触发、输入等。
数字示波器内部构成框图
数字示波器的面板
显示部分
示波器最重要的功能就是把你要测量的电信号以时间为坐标显示出来,因此它是示波器最重要的部分之一。
示波器的显示界面一般都是通过多条水平和竖直的线交错构成的格状,竖直的刻度单位为伏/格,水平的刻度单位为秒/格。一般来讲示波器的显示屏在竖向(伏)有8-10个格,在横向(秒)有10-14个格。
越来越多的数字示波器使用多色的LCD显示屏,能方便在一个屏幕上显示多个波形(以不同的颜色)。
显示屏周边(右侧或下面)一般会有5个输入按键,用以菜单切换以及设置的控制。
垂直调节
示波器显示屏的竖向显示的是测量信号的电压,它的显示控制一般会通过两个旋钮:一个调节波形在竖直方向的位置,另一个调节每格的刻度(伏/格)。.
调节垂直显示刻度的旋钮
带直流偏移的信号
通过这两个旋钮的调节,你可以观察到波形的细节,比如你要仔细看一个5V的方波信号的上升沿,就可以通过调节这两个旋钮将上升沿放大进行查看。
水平调节
示波器的水平部分为时间标尺,就像垂直调节一样,水平调节按钮也有两个 - 调节左右移动 和改变刻度的大小(单位为秒/每格)。
左右位置的旋钮可以左或右移动显示波形,屏幕上显示多少个周期的波形是通过水平比例的按钮来调节的。
你可以通过水平比例按钮在横向放大波形仔细查看其细节部分。
通过横向和竖向调节使得波形的显示正好适当
触发系统
触发系统主要是为了稳定波形的显示并让示波器能聚焦,通过调节“触发”按钮,你可以告诉示波器在哪一个起始点开始测量。如果被测的信号是周期性的波形,通过触发的设置,可以让波形在屏幕上稳定显示,像静止不动一样。如果触发没有调节好,波形就会在屏幕上跑来跑去,不能稳定下来。
示波器的触发部分一般包含一个触发电平按钮和几个用以选择触发源、触发类型的按钮。调节“触发电平按钮”就能够设置触发点为某一个固定的电压值。
其它的几个按钮和屏幕菜单一起构成了触发系统的其余部分,主要的用途是选择触发源以及触发模式。几种常用的触发类型:
最基本的边沿触发 - 当输入信号的电压超过某一个设定的电平,示波器开始测量。可以设置为上升沿或下降沿触发,或者两个沿都可以触发。
脉冲触发 - 遇到某种指定的电压脉冲的时候示波器开始测量,你可以指定脉冲的宽度以及脉冲的方向。
斜坡触发 - 正向或负向的波形斜坡超过了某一个指定的时间则启动示波器的测量。
还有一些更复杂的触发机制用以检测某些标准的波形,比如NTSC或PAL**信号. **
左侧的菜单可以看到不同的触发类型
探头部分
示波器的测量离不开同被测电路连接的探头,它是一个单输入的设备,将电信号从待测的电路上传递到示波器。它有一个比较尖的头用以接触你要检测的电路的测试点,很多时候这个尖头会配上钩子、镊子或夹子以方便连接到被测的电路上。每个探头都有一个 接地夹子, 测试的时候需要将这个接地夹子安全地连接到待测电路的公共地的位置。
探头看起来简单,用起来却学问大多了,多数硬件工程师不会使用示波器的探头,我们来看看怎么回事:
理想状况下,示波器的探头应该对被测的信号没有任何影响,但现实却是它长长的连线不可避免地有着杂散电感、电容、以及电阻。因此,无论如何,它们都会影响到示波器对待测信号的解读,尤其在非常高的频率的时候。
探头有多种,最常用的是多数示波器自带的无源(Passive)衰减探头,它内部有着大的电阻并联一个很小的电容,以帮助减小探头的长电缆给待测电路带来的负载效应。这个内部的高电阻同示波器输入端的电阻串联,对输入信号构成了分压。
示波器探头内部等效阻抗以及和示波器输入端的连接
多数的示波器探头的内部阻抗为9MΩ的电阻,它同示波器输入端的标准的1MΩ的输入电阻相连接,构成了1/10的分压,这种探头被称为10X衰减探头。很多探头都有一个开关,可以切换是10:1衰减(10X)还是不做衰减(1X).
衰减探头在高频应用中能够保证比较高的精准度,但不好的地方就是对输入信号先衰减了10倍,如果你要测量的信号是非常小幅度的微弱信号,最好还是使用不做衰减的1x探头,这时候你需要设置示波器的菜单以告知其衰减发生了变化,很多示波器能够自动检测到探头是衰减还是不衰减。
除了刚才讲的无源衰减探头,还有有源探头(单独供电),能够在送入示波器之前对待测信号进行放大甚至预处理;有能够测量交流或直流电流的探头,电流探头一般是环绕着待测的信号线,而不接触到被测的电路。
示波器的使用步骤
1 选择和设置探头
先根据需要选择一个合适的探头,对于多数测量的信号来讲,你购买的仪器里随带的简单的无源探头就可以用了。
接下来,设置好探头的衰减,一般常用的是10X,它是很多场合最佳的选择,如果你要测量幅度比较小的信号,可以设置在1X档。
2 接上探头,打开示波器
将探头连接到示波器的第一个通道,打开示波器开关开始运行,你可以看到示波器屏幕上的方格、刻度以及由一条水平线构成的波形,带着微弱的噪声波动。
屏幕上将显示上次关机前设置好的时间(水平方向)和电压(竖直方向)刻度,你不用管这些,调整相应的旋钮,将示波器放到标准的设置:
1.
打开通道1,关掉通道2;
2.
设置通道1为直流耦合;
3.
设置触发源为通道1 – 没有外接的信号源或其它通道的信号对此进行触发;
4.
设置触发类型为上升沿触发, 触发模式为 自动 ;
5.
确认示波器探头的衰减设置同你使用的探头的状态一致(例如1X, 10X);
3 校准探头
示波器一般在其面板的右下方都会提供一个内部产生、供校准用的高可靠、固定频率和幅度的方波测试信号,它有两个分开的连接点 - 一个输出校正信号,一个连接系统的地。将探头的接地夹子连接到这个测试信号的接地端,示波器的探头连接到测试信号的输出。
旋转水平向和垂直向的调节按钮,将波形适当地显示在屏幕上,调节“触发”按钮让波形稳定地显示在屏幕上。
4. 对衰减的探头进行补偿
如果探头设置为10X,却发现显示的方波波形不是严格的方波,你需要进行阻抗补偿 - 用小改锥调节如下图中显示的探头上的并联电容的大小。
高频时的探头等效电路
在调节的时候你可以看到屏幕上的波形在变化。
调节直至屏幕上显示的波形为完美的方波。记住,只有在用10X的时候才需要进行补偿调节。
对于被测的电路来讲示波器探头+示波器等效为一个10MΩ的电阻和Cload的并联,对被测电路工作的影响可以根据这个等效电路来计算。
一旦校准好了探头,就可以测量电路上的信号了,测量的时候几个小技巧:
1 采用比较方便、安全、不影响性能的连接方式 -- 将探头的接地夹子接到这个点上。有时候你需要焊接一根很细的导线在电路板上以方便探头的接地夹夹住,探头的尖头端也可以通过带弹簧的夹子、钩子等方便地连接待测的信号点 - 总之要找到一种方法,你不必要一直用手拿着探头。
2. 避免测量方法不当导致的噪声 - 如果待测的信号为高频(几十MHz)信号,用示波器测试的时候要做到地线的连接尽可能短,否则会由于探头的接地线同探头的尖头构成的环路形成天线,将待测点附近的高频信号(空间的无线电波、板子上开关信号辐射)接收下来叠加在待测信号上,会给自己的调试带来很大的干扰。多数情况下需要将同轴线直接焊接在电路板上,避免产生接收回路。
3. 熟悉你使用的仪器的所有测量工具 - 不同的示波器内部带的测量功能不同,你可以查看说明书以及调节各个按键先对你用的仪器功能全面熟悉一下,比如周期、峰峰值、脉宽、占空比、上升沿、下降沿、平均电压等的测量以及如何使用FFT功能,有哪些是能够自动测量并显示的。
使用示波器的测量工具获取Vpp, Vmax, 频率,周期,占空比等信息.
参数的自动计算显示
4. 手动测量波形参数 - 可以通过移动光标读数、计算得到,移动光标的时候时间和电压值都会发生变化。一般光标都是成对出现,你可以通过读取两个光标之间的差值得到需要的信息。
使用光标测量方波的过冲振铃
5. 波形对比 - 基于你的测量结果,可以对电路进行调整,并调整后再次测量,有一些示波器具有保持、打印波形的功能,因此你可以调出前面测试的信号进行对比。
由于篇幅有限,关于示波器的使用就讲这些,如果要了解更深入的内容可以在google.com或bing.com里搜索“oscilloscope ppt”,能够看到很多关于示波器如何使用的教程。再有问题可以加入我们的测试测量技术交流群进行交流。
今晚8点苏老师会通过摩尔吧在线视频平台(www.moore8.com)直播 - “工程师常用仪器的使用”,简单介绍万用表、示波器、电源、信号发生器等的使用要领,并详细讲述信号的构成以及对其的测量。直播期间课程免费,有兴趣观看直播的朋友可以点击“阅读原文”跳转到摩尔吧的视频页面进行报名观看。
自我介绍:B站资深恰饭Up,双985通信专业毕业,擅长高速数字电路设计(X86/FPGA/ARM等)。不定期分享硬件电路设计干货,知识体系,有趣专业实验。包括但不仅限于学习方法、模电、FPGA、小信号、高速电路、信号完整性、Layout、嵌入式、学习方法。已帮助成千上万电子专业学生和初级工程师入门成长。技术交流群集合了众多经验丰富的技术大牛,交流氛围极佳。我的宝藏都在这了。
更多精彩在公众号:路飞的电子设计宝藏
优惠劵
一路带飞
关注
关注
103
点赞
踩
806
收藏
觉得还不错?
一键收藏
知道了
2
评论
正确使用示波器
今天我们就来聊聊“使用示波器的正确姿势”我们都知道万用表(又称欧姆表)是工程师最常用的调试电路的工具,但万用表的功能非常有局限,如果你需要观察一些随时间变化的参量,比如频率、幅度、噪声等等,示波器就是最好的选择。那我们先看看示波器是什么?主要的用途是什么?示波器的主要用途就是将随时间变化的电信号以图形的方式画出来,多数的示波器是用时间为x轴,电压为y轴产生的二维图形。横轴为时间,纵轴为电压在示波器屏幕周边的控制按钮可以调节图形的显示比例,显示的横轴和纵轴刻度都能够调节
复制链接
扫一扫
专栏目录
示波器操作入门
12-28
示波器操作入门,教你轻松学会怎么使用示波器,简单易学
示波器怎样使用
01-20
我常常看到很多小公司用的过于低端,带宽低,采样率底,认为能抓到波形就行,认为没有必要买那么好的示波器,并且认为示波器操作简单,没有那么多规范。看到他们对示波器的操作,不做测试之前的准备,拿起来就用,其实那样做是不正确的,可能往往就是这个操作不正确导致测试结果失真,影响分析。即使一些很资深的工程师可能也不会注意到一些细节。不少工程师对示波器的认识度欠缺,如何更好的使用示波器还是有待提高的。下面就以我见到的很多工程师常犯的问题予以纠正,分享一下我掌握的一些知识。 示波器怎样正确使用 很多工程师直接拿起探头就测试,根本不去检查探头是否需要补偿,示波器是否需要校验。只有在一些大公司或经过培训的工程
2 条评论
您还未登录,请先
登录
后发表或查看评论
第一次用示波器怎么使用(基础经验)
qq2850503026的博客
01-02
2万+
有的人第一次使用示波器可能会被示波器的一堆理论知识绕晕,从而丧失学习的兴趣。如果我们一开始能先学习如何测量一个简单的信号,快速的入门和获得成就感,也许就更有动力去学习和了解示波器。基于这种想法,在学习一些理论知识之前,我们可以先来看看如何用示波器测量一个简单的信号。
准备工具:
示波器,探头
第一步:示波器开机,然后将探头与示波器相连
第二步:找到示波器的方波校准信号输出端
第三步,将探头探针...
示波器的使用技巧
01-20
1.示波器使用前一定要进行校准和补偿。
校准主要是为了使当前的测量值处于化的,不受外界温度环境等的影响。校准的方法是调用示波器里面自行加载的校准文件进行校准,基本上就是按下校准键就可以了。
补偿是为了使输入示波器的信号不会因为阻抗不匹配而发生信号完整性问题。补偿的方法是将探头接到示波器的方波发生信号引脚(这个引脚示波器都会有的,主要就是用来进行补偿校准的),用小螺丝刀调整探头的松紧,使方波信号呈现正确的形状。补偿过度会使波形上下冲,补偿不足会使波形过缓。
2.调节示波器的量程,时基,观察中心点坐标等使波形达到观测状态。
3.电源文波的测量
电源
示波器(详细教程)
人生苦短,我用Python
10-15
7830
示波器你们用过吗?图文并茂教您使用方法!
示波器全名为阴极射线示波器。它是观察和测量电信号的一种电子仪器
示波器的作用是什么?
示波器的作用无可取代,它一直是工程师设计、调试产品的好帮手。但随着计算机、半导体和通信技术的发展,示波器的种类、型号越来越多,从而使示波器的作用得到详细的划分。
1、广泛的电子测量仪器;
2、测量电信号的波形(电压与时间关系);
3、测量幅度、周期、频率和相位等参数;...
示波器使用教程.pdf
05-15
示波器的使用是电子工程师必须掌握的基本技能,此文档非常适合电子工程师入门学习,里面内容详尽,通俗易懂,手把手带你入门。
示波器操作说明
热门推荐
huangling07031190的专栏
07-03
2万+
示波器操作说明
一、 面板说明。示波器面板见下图
1、 Run/Stop 停止/运行按钮
2、 Single 单次触发按钮/按下此按键变绿后可抓触发一次
3、 Autoset 自动设置按键 /要快速显示波形时,请执行此按钮,示波器会自动设置垂直、水平和触发控制快速显示
4、 Intensity 波形亮度/按下可用通用旋钮a和b控制波形的显示亮度和刻度亮度
5、 Cursors 光标显示按钮/长按此按钮可在屏幕上显示出X/Y轴光标,再按一次则可关闭
进入光标显示界机后可选项需要设置的:
① 光标 波形
示波器的使用
weixin_55255438的博客
03-07
3583
余晖时间使得波开形的观察才更有目的性,同时能够避兔异常波形累积的间题。余晖效应:对于示波器显示的控制,我们在测量波形的时候,由于在高刷新率下,波形不断更新,屏幕上显示的波形基本静止不动。但是事实上,每次刷新出来的波形会在屏幕上停留一段时间后才消失,这种波形在屏幕上从显示到消失的过程我们称之为余辉效应。由于实际中的被测信号具有极大的不稳定性,所以最理想的状态是能够观察到每一时刻的波形,在无限余辉模式下,屏幕上显示的是从开始到当前,所有历史波形叠加的结果。
示波器知识汇总
keilzc的博客
07-23
3732
1.示波器测量时需要避免的七大常见错误
在理想情况下,所有探头都应该是一条不会对被测设备产生任何干扰的导线,当连接到您的电路时,具有无穷大的输入电阻,而电容和电感为零。这样将会精确复制被测信号。但现实情况是,探头会给电路带来负载效应。探头上的电阻、电容和电感元件可能改变被测电路的响应。
错误1没有校准探头
探头在出厂的之后都进行过校准,但它们没有针对示波器前端进行校准。如果它们未在示波器输入端上进行校准,那么就无法得到正确的测量结果。
无源探头可以调节探头的可变电容,使补偿与正在使用的示波器输入完美匹配。
正确使用示波器测量电源纹波
01-20
电源纹波测试在电源质量检测中是... 在ZDS2024 Plus示波器中接入一个3.3V的电源信号,探头档位使用X10档,进行电源纹波的测量,点击【Auto Setup】之后,经过调解水平时基,垂直档位和垂直偏移,可以得到如下图1所示。
正确使用示波器的6个原则
01-20
没有经过训练的工程师在使用示波器的细节上存在很多经验上的不足,譬如很多工程师喜欢先按Auto Setup然后Stop, 再展开。这过程中探头的连接问题、示波器量程的选择等很多问题都被忽视了。本次演讲将分享使用示波器应...
电子测量中的正确使用示波器测量电源纹波
10-15
电源纹波测试在电源质量检测中是... 在ZDS2024 Plus示波器中接入一个3.3V的电源信号,探头档位使用X10档,进行电源纹波的测量,点击【Auto Setup】之后,经过调解水平时基,垂直档位和垂直偏移,可以得到如下图1所示。
示波器正确使用的小技巧
01-20
示波器是一种用途十分广泛的电子测量仪器。... 下面就简单说下示波器使用小技巧: 1.通用示波器通过调节亮度和聚焦旋钮使光点直径以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电子束
通用模拟示波器的正确使用方法
01-20
示波器是一种用途非常广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的...而所谓对模拟示波器的校正,是将模拟示波器的原来波形在测试之前正确调试出来。 在实际工作中
示波器的的使用技巧
01-20
1.示波器使用前一定要进行校准和补偿。 校准主要是为了使当前的测量值处于化的,不受外界温度环境等的影响。校准的方法是调用示波器里面自行加载的校准文件进行校准,基本上就是按下校准键就可以了。 补偿是...
示波器探头结构及其使用技巧分析
01-20
一、示波器探头结构 1.探头结构 以日常使用较多的LP-16BX探头为例,其典型结构如图1所示,它的一端具有一个挂钩,检测波形时可以钩到电路的元件引脚上,挂钩外有一个护套,内有弹簧。检测时用手将护套拉下,挂钩...
如何校正示波器
01-20
示波器与其它仪器一样(如万用表等),在使用之前都必需要先对其进行校正。而所谓对示波器的校正,是将示波器的原来波形在测试之前正确调试出来。也就是说,校正出来的波形要与示波器本身所设定的参数一致(这些参数...
电子维修中的示波器正确使用的小技巧
10-16
示波器是一种用途十分广泛的电子测量仪器。... 下面就简单说下示波器使用小技巧: 1.通用示波器通过调节亮度和聚焦旋钮使光点直径最小以使波形清晰,减小测试误差;不要使光点停留在一点不动,否则电
keysight示波器使用说明
最新发布
01-31
Keysight示波器是一种高性能的测试仪器,用于测量电子设备中的电压和电流信号。以下是Keysight示波器的使用说明:
1.连接设备:首先,将需要测量的电子设备正确地连接到示波器上。通常,使用BNC连接器将设备的输出连接到示波器的输入通道。
2.打开示波器:按下示波器的电源按钮,等待示波器启动。一旦示波器启动,将会显示一个屏幕和一些控制按钮。
3.设置测量参数:根据需要,使用示波器的控制按钮设置测量参数,如时间基准、垂直范围、触发等。这些参数可以根据需要进行调整,以获取正确的测量结果。
4.触发信号:示波器需要一个触发信号才能开始进行测量。根据需要,选择适当的触发源,并调整触发电平和触发沿以确保测量结果的稳定性和准确性。
5.观察信号:一旦示波器完成了设置和触发,您将能够在示波器的屏幕上看到来自所连接设备的电压和电流信号。您可以调整屏幕显示的时间和垂直比例,以便更好地观察信号的细节。
6.保存和分析数据:如果需要保存示波器显示的数据,您可以使用示波器提供的数据保存功能。可以将数据保存到示波器的内存中,也可以通过USB接口将数据传输到计算机上进行后续分析。
7.关闭示波器:测量完成后,按下示波器的电源按钮关闭示波器,确保所有连接和电源关闭。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
一路带飞
CSDN认证博客专家
CSDN认证企业博客
码龄5年
暂无认证
63
原创
17万+
周排名
4万+
总排名
17万+
访问
等级
1135
积分
656
粉丝
259
获赞
23
评论
2255
收藏
私信
关注
热门文章
正确使用示波器
49271
什么是纹波、噪声、过冲、回沟?
8765
硬件设计常用网站
8481
硬件工程师面试常见问题
5988
硬件工程师都应该DIY一个示波器
5222
分类专栏
硬件
24篇
我的各个自媒体平台
51篇
职业规划
1篇
书籍推荐
2篇
硬件设计
5篇
最新评论
什么是纹波、噪声、过冲、回沟?
ljl4225884:
很棒很全面
I2C从机挂死分析和解决方法
Biu Biu Biu~642:
软件Iic会出现挂死的情况吗?
I2C从机挂死分析和解决方法
C??? ???? ???:
请问您找到方法了吗,模拟很容易,硬件IIC直接写寄存器。要如何发出9ACK呢?
硬件工程师都应该DIY一个示波器
schhqq:
楼主是不是修改了电路?
硬件工程师都应该DIY一个示波器
schhqq:
能分享一下你的PCB和原理图吗
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
硬件工程师入门进阶,一文搞懂,看这篇就对了
硬件设计视频分享
硬件设计常用网站
2023年1篇
2021年77篇
2020年1篇
2019年6篇
目录
目录
分类专栏
硬件
24篇
我的各个自媒体平台
51篇
职业规划
1篇
书籍推荐
2篇
硬件设计
5篇
目录
评论 2
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
示波器的使用方法 - 示波器的基本实验 - 知乎切换模式写文章登录/注册示波器的使用方法 - 示波器的基本实验是德科技 Keysight Technologies已认证账号本文适用于在校电子工程和物理专业学生的示波器实验室指南和教程。本示波器实验指南和教程适用于随教育培训套件 (DSOXEDK) 一同许可的 Keysight InfiniiVision 2000, 3000 X 系列示波器和4000 X 系列示波器。基本示波器和波形发生器测量实验示波器基本实验 #1:对正弦波执行测量示波器基本实验 #2:了解示波器触发的基本知识 示波器基本实验 #3:触发噪声信号示波器基本实验#4:记录和保存示波器测试结果示波器基本实验 #5:补偿 10:1 无源探头示波器基本实验 #6:使用内置函数发生器生成波形示波器入门使用方法 - 什么是示波器?对于如今的模拟和数字电路来说,示波器是进行电压和定时测量的重要工具。当您最终从电子工程学校毕业,进入电子行业工作时,您可能会发现在测试、验证和调试设计方面,使用示波器这一测量工具的频率要比任何其他仪器都要高得多。即使是在特定大学里学习电子工程或物理专业的课程期间,示波器这一测量工具也是在各个电路实验中用来测试和验证实验作业及设计的最常用仪器。遗憾的是,许多学生永远都不能完全掌握如何使用示波器。他们的使用模式通常是某个随机旋钮和按钮,直到示波器显示屏上奇幻般出现一个与他们要寻找的效果接近的图片。但愿在完成这一系列简短的实验后,您会对示波器是什么以及如何更有效地使用它有了更好的了解。那么,什么是示波器?示波器是一种电子测量仪器,可以在无干扰的情况下监控输入信号,随后以图形方式采用简单的电压与时间格式显示这些信号。您的教授在其学生时代使用的这类示波器可能就是完全基于模拟技术的示波器。这些采用早期技术的示波器通常称为模拟示波器,具有限定的带宽,不执行任何种类的自动测量,而且要求输入信号是重复的 (连续出现并重复输入信号)。您将在这一系列实验中 (可能会贯穿大学及研究生学习的其余时间)使用的这类示波器称为数字存储示波器,有时仅称为 DSO。或者,您可以使用混合信号示波器,该示波器将传统的 DSO 测量模拟与逻辑分析测量相结合,有时称为 MSO。请注意,所有的数字实时示波器基本上只有DSO和MSO之分。其它的叫法都是在这两种示波器的基础上增加某些功能而已。今天的 DSO 和 MSO 可以捕获并显示重复信号或单冲信号,它们通常包括一系列自动测量和分析功能,借助这些功能您可以比您的教授在学生时代更快速、更准确地体现设计和学生实验的特征。快速了解如何使用示波器以及示波器有何功能的最佳方式是首先了解示波器上的一些最重要的控件,然后只需开始使用其中一个测量一些基本的信号,如正弦波。获得 DSOXEDK 教育培训套件选项的许可后,Keysight TechnologiesInfiniiVision 2000 和 3000 X 系列示波器(在图 1 中显示)便会产生模拟和数字培训信号。我们将在这一系列简短实验中使用其中许多信号,帮助您了解如何使用示波器这一最重要的电子信号测量仪器。Keysight InfiniiVision 2000/3000 X 系列示波器执行示波器测量时的第一项任务通常是将示波器探头连接在测试设备与示波器的输入 BNC 接口之间。示波器探头在测试点提供相对较高的输入阻抗端子功能(高电阻,低电容)。高阻抗连接对于将测量仪器与测试电路分隔开来非常重要,因为我们不希望示波器及其探头改变测试信号的特征。有多种不同种类的示波器探头可用于特定类型的测量,但是您今天将使用的探头是最常用的探头类型,称为 10:1 无源电压探头,如图 2 所示。“无源”仅意味着此类型的探头不包括任何“有源”组件,如晶体管和放大器。“10:1”意味着此探头将以 10 为常量衰减示波器输入中接收的输入信号。图2. 无源 10:1 电压探头使用标准的 10:1 无源探头时,应在信号测试点与地面之间执行所有的示波器测量。换句话说,您必须 将探头的接地夹接地。若被测点是浮地的,我们不建议使用此类探头直接测量电路中组件之间的相对电压。如果需要测量未接地组件内的电压,则在使用示波器的两条通道相对于地面测量组件两端的信号时,可以使用示波器的减法数学函数(在实验 #13 期间介绍),或者可以使用特殊的差分有源探头。另外还应注意,绝不应使示波器的部件成为被测电路功能结构的一部分。图 3 显示了使用示波器的默认 1 MΩ 输入选择 (这是使用此类探头时必需的)连接到示波器时的 10:1 无源探头的电子模型。请注意,许多较高带宽的示波器还具有用户可选择的 50 Ω 输入端子选择,这种选择通常用于有源探头端子和/或使用 50 Ω BNC 同轴电缆从 50 Ω 电源直接输入信号时。图3. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图尽管无源探头和示波器的电子模型包括固有/寄生电容 (非设计)以及特意设计的补偿电容网络,但是现在让我们忽略这些电容元件,并分析低频或直流电输入条件下此探头/示波器系统的理想信号行为。从探头/示波器电子模型中删除所有的电容组件后,只剩下与示波器的 1 MΩ 输入阻抗串联的 9 MΩ 探头端部电阻。探头端部的净输入电阻则为 10 MΩ。使用欧姆定律,您会发现示波器输入处接收的电压电平将为探头端部处电压电平的 1/10 (Vscope = Vprobe x (1 MΩ/10 MΩ))。这意味着,使用 10:1 无源探头时,示波器测量系统的动态范围已被扩展。换句话说,与使用 1:1 探头测量的信号相比,您测量的信号幅度可高出 10 倍。此外,示波器测量系统 (探头 + 示波器)的输入阻抗将从 1 MΩ 增加到 10 MΩ。这是好事,因为较低的输入阻抗可以负载测试设备 (DUT),但是会更改 DUT 内的实际电压电平 (这不是好事)。尽管净输入阻抗 10 MΩ 确实很大,但是您必须记住,必须要考虑到与探测设备的抗阻相关的这一负载阻抗量。例如,具有 100 MΩ 反馈电阻器的简单运算放大器电路可能会在示波器上提供一些错误的读数。如果您在电路实验中使用 Keysight 3000 X 系列示波器,则此示波器将自动检测并将探头衰减常数设置为 10:1。如果您使用 Keysight 2000 X 系列示波器,则必须手动输入探头衰减常数 (10:1)。示波器知道探头衰减常数后 (自动检测或手动输入),会提供所有垂直设置的补偿读数,以便将所有的电压测量引用到探头端部的无衰减输入信号。例如,如果您探测 10 Vpp 信号,则在示波器输入处收到的信号实际上仅为 1 Vpp。但是,由于示波器知道您使用的是 10:1 分压器探头,因此示波器在执行电压测量时将报告看到了 10 Vpp 的信号。到达实验 #5 (补偿您的 10:1 无源探头)时,我们将回过头研究此无源探头模型,并说明电容组件。探头/示波器电子模型中的这些元件将影响组合示波器和探测系统的动态/交流电性能。示波器前面板首先让我们了解示波器上最重要的控件/旋钮。在示波器顶部附近是“水平”控件,如图 4 所示。较大的旋钮用于设置水平刻度调整 (秒/格)。此控件可用于设置显示波形的 X 轴刻度调整。一个水平“格”为每个垂直网格线之间的 Δ-time。如果要查看更快的波形 (频率较高的信号),则将水平刻度调整设置为较小的 sec/div 值。如果要查看更慢的波形 (频率较慢的信号),则通常将水平刻度调整设为较高的 sec/div 设置。“水平”部分中较小的旋钮可用于设置波形的水平部分。换句话说,使用此控件可以左右移动波形的水平位置。示波器的水平控件(s/div 和位置)通常称为示波器的主要“时基”控件。值得注意的是,旋钮都是可以按下的。用来调整时基设置的旋钮按下是在精调与粗调之间切换。用来控制水平位移的旋钮按下可以迅速将波形的偏移归零。图4. 示波器水平 (X 轴)控件示波器底部附近垂直部分(在输入 BNC 的正上方)中的控件/旋钮(请参考图 5)可用于设置示波器的垂直刻度调整。如果使用双通道示波器,则有两对垂直刻度调整控件。如果使用四通道示波器,则有四对垂直刻度调整控件。垂直部分中每个输入通道的较大旋钮可用于设置垂直刻度调整系数 (伏/格)。这是波形的 Y 轴图形刻度调整。一个垂直“格”为每个水平网格线之间的 Δ-volts。如果要查看相对较大的信号 (高峰峰值电压),则通常将 Volts/div 设置设为相对高的值。如果查看小的输入信号电平,则应将 Volts/div 设置设为相对低的值。垂直部分中每个通道的较小控件/旋钮是位置/偏移控件。您可以使用此旋钮在屏幕上上下移动波形。垂直调整旋钮也是可以按下的。用来调整通道垂直分辨率的旋钮按下是在精调与粗调之间切换。用来控制垂直位移的旋钮按下可以迅速将波形的垂直偏移归零。图5. 示波器垂直 (Y 轴)控件另一个非常重要的示波器设置变量是触发电平控件/旋钮,如图 6 所示。此控制旋钮位于示波器前面板中心附近,标记为触发的部分下方。触发可能是示波器被了解得最少的方面,但该功能是示波器中您应了解的最重要功能之一。在进入实践实验时,我们将更为详细地介绍示波器触发。图6. 示波器触发电平控件阅读下面实验中的说明时,任何时候都会看到一个用方括号括住的粗体字,如 [ 帮助],这是位于指示波器右侧的一个前面板键 (或按钮)。按下该键时,具有与该特定前面板功能关联的“软键”选择的唯一菜单将被激活。“软键”是位于示波器显示屏下方的 6 个键/按钮。根据激活的菜单,这些键的功能会发生变化。现在找到图 7 中显示的 Entry 控制旋钮。这是示波器显示屏右侧位于黑色阴影区域中的旋钮。我们会非常频繁地使用此旋钮来更改一系列不具备专用前面板控件的设置变量和选择。选择软键时,任何时候您都会看到绿色的弯曲箭头 ,这指示 Entry 旋钮可用于控制此变量。请注意,此旋钮还用于设置波形亮度级别。让我们开始使用示波器进行测量!图7. 示波器通用 Entry 控件示波器基本实验 #1:对正弦波执行测量在第一个实验中,您将学习如何使用示波器的水平和垂直刻度调整控件来正确设置示波器,从而显示重复正弦波。此外,还将学习如何对此信号执行一些简单的电压和定时测量。1 将一个示波器探头连接到通道 1 输入 BNC 和标记为“Demo1”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子 (接地)。图8. 将通道 1 和通道 2 输入之间的探头连接到培训信号输出端子 2. 将第二个示波器探头连接到通道 2 输入 BNC 和标记为“Demo2”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子。3 按前面板右上部分附近的 [默认设置] 键。默认设置会将示波器置于工厂预设配置中。这不仅会将示波器的 X 和 Y 刻度调整系数设置为预设值,而且还会关闭某个学生可能使用的任意特殊操作模式。4 按 [帮助] 前面板键 (在通道 2 垂直控件旁边)。5 按示波器显示屏下方的培训信号软键。6 使用 Entry 旋钮选择正弦信号 (列表顶部),然后按输出软键将其打开。现在,Demo1 端子上应存在正弦波,但是还不能使用示波器的默认刻度调整系数来识别。我们现在将调整示波器的垂直和水平设置,以扩展此波形并将此波形位于显示屏的中心。7 顺时针旋转通道 1 V/div 旋钮,直到您看到显示的波形覆盖屏幕一半以上。正确的设置应为 500 mV/div,在显示屏左上角附近显示为“500mV/”。8 顺时针旋转 s/div 旋钮 (“水平”部分中的大旋钮),直到您观察到显示屏上出现正弦波的两个以上周期。正确的设置应为 50 ns/div,在显示屏顶部中间附近显示为“50.00ns/”。您的示波器的显示屏现在应与图 9 类似。至此我们完成了时基的基本设置。图9 用于查看正弦波培训信号的初始设置9 旋转“水平”位置旋钮,左右移动波形。10 按“水平”位置旋钮,将其设回到零 (在中心屏幕上显示为 0.0 秒)。11 旋转通道 1 垂直位置旋钮,上下移动波形。请注意,左侧的地指示器也会上下移动,并告知我们此波形上 0.0 伏 (接地电平)所在的位置。12 按通道 1 垂直位置旋钮将接地 (0.0 V) 设回中心屏幕。现在,让我们对此重复正弦波执行一些测量。请注意,示波器的显示屏基本上是 X - Y 图形。在我们的 X 轴(水平)上,我们可以测量时间,在我们的 Y 轴(垂直)上,我们可以测量电压。在许多电子工程或物理课程作业中,您可能计算过电子信号并在图纸上采用类似的格式画过图,只不过是静态的。或者,您或许使用过各种 PC 软件应用程序自动画过波形图。将重复输入信号应用于示波器时,我们可以观察到波形的动态 (持续更新)图。我们的 X 轴包含分布于屏幕上的 10 个主要格,每个主要格均等于 sec/div 设置。在这种情况下,每个水平主要格均表示 50 纳秒(假设示波器的时基设置为 50.0 ns/div,如前文所述)。由于屏幕中有 10 个格,因此示波器从显示屏的左侧到显示屏的右侧显示 500 ns(50.0 ns/div x 10 格)。请注意,每个主要格还被分为 4 个次要格,在中心水平轴上显示为勾选标记。每个次要格则表示 1/4 div × 50 ns/div = 12.5 ns。我们的 Y 轴包含 8 个主要格(垂直方向),每个主要格均等于 V/div 设置,应设置为 500 mV/div。在此设置下,示波器可以测量高为 4 Vp-p(500 mV/div x 8 格)的信号。每个主要格分为 5 个次要格。每个次要格 (在中心垂直轴上表示为勾选标记)则均表示 100 mV。13 通过将一个上升沿 (中心屏幕)的 0.0 V 电平到下一个上升沿的 0.0 V 电平的格 (主要和次要)数累加起来,然后乘以 s/div 设置 (应为 50.0 ns/div),估算其中一个正弦波的周期 (T)。T= _____________14 此正弦波的频率是多少 (F = 1/T)。F = _____________现在,让我们估算这些正弦波的峰峰值电压电平,但是首先,让我们对垂直设置进行几项较小调整,从而帮助我们更准确地执行此测量。15 调整通道 1 垂直位置旋钮 (亮起的“1”键下面较小的旋钮),直到正弦波的负峰与其中一个主要格线 (或网格线)相交。16 接下来,调整水平位置旋钮 (前面板顶部附近的较小旋钮),直到正弦波的一个正峰与具有次要格勾选标记的中心垂直轴相交。17 现在,通过将正弦波的负峰到正峰的格 (主要和次要)数累加起来,然后乘以 V/div 设置 (应为 1 V/div),估算此正弦波的峰峰值电压。Vp-p = _____________现在,让我们使用示波器的“光标”功能来执行上述相同的电压和定时测量,但不必累加格数,然后乘以刻度调整系数。首先,找到前面板“测量”部分中的“ 光标”旋钮,如图 10 所示。图 10 . 测量光标旋钮18 按光标旋钮;然后旋转此旋钮,直到“X1”突出显示;接着再次按此旋钮进行选择 (如果您不是在旋转选中“X1”光标后第二次按此旋钮,可能会出现超时现象,随后 X1 光标将自动被选中,且该菜单将关闭)。19 旋转光标旋钮,直到 X1 光标 (#1 定时标识)在特定电压电平下与正弦波的某一上升沿相交。提示:在波形的某一点对齐光标,波形在该点与某一水平网格线交叉。20 再次按光标旋钮;旋转此旋钮直到“X2”突出显示;然后再次按此旋钮进行选择。21 旋转光标旋钮,直到 X2 光标 (#2 定时标识)在相同电压电平下与正弦波的下一上升沿相交。22 再次按光标旋钮;旋转此旋钮直到“Y1”突出显示;然后再次按此旋钮进行选择。图 11. 使用示波器的光标测量23 旋转光标旋钮,直到 Y1 光标 (#1 电压标识)与正弦波的负峰相交。24 再次按光标旋钮;旋转此旋钮直到“Y2”突出显示;然后再次按此旋钮进行选择。25 旋转光标旋钮,直到 Y2 光标 (#2 电压标识)与正弦波的正峰相交。26 此信号的周期、频率和峰峰值电压 (光标读数在显示屏的右侧)是多少?ΔX = _____________ 1/ΔX = _____________ ΔY(1) = _____________用于测量示波器上的时间和电压的最常用方法是我们最初使用的“将格累加起来 ”方法。尽管必须将格累加起来,然后乘以示波器设置,但是熟悉其示波器的工程师可以快速估算信号的电压和定时参数,有时大致的估算是了解信号是否符合测试要求快速的手段。使用光标进行测量更准确一点,并能从测量中去除猜测因素。今天的大多数示波器还提供了一种自动执行许多参数测量的更准确且更快的方式。当我们开始对一些数字信号执行某些测量时,我们将回过头使用实验 #10 期间示波器的自动参数测量。但是现在,我们需要回过头来了解示波器的触发功能。示波器基本实验 #2:了解示波器触发的基本知识正如前面所说,示波器触发可能是示波器最重要的功能。如果要从示波器测量中获得最多收益,应了解此功能。尝试对今天许多更复杂的数字信号执行测量时,此功能特别重要。遗憾的是,示波器触发是示波器操作中被了解得最少的方面。可将示波器“触发”看作“同步图片获取”。当示波器捕获并显示重复输入信号时,每秒可获取输入信号的数万个图片。为了查看这些波形 (或图片),必须将图片获取与“某一刻”同步。“某一刻”是输入信号中的唯一时间点,或者在使用示波器的多个通道时,是基于输入信号的布尔组合的唯一时间点 (逻辑“码型 ”触发)。示波器触发的模拟情景是赛马比赛终点的照片。尽管不是重复事件,相机快门必须与头马鼻子通过终点线的那一刻同步。在赛马开始和结束之间的某一时间随机获取赛马图片,类似于查看示波器上未触发的波形。要更好地了解示波器触发,让我们对实验 #1 中使用的我们熟悉的正弦波执行更多测量。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”培训信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 50.00 ns/div。7 按 [触发] 前面板键。您的示波器的显示屏现在与图 12 类似。如果使用示波器的默认触发条件,则此信号与 0.0 V 电平(触发电平设置)交叉时,示波器应在通道 1 探测并捕获的正弦波的上升(斜率选择)沿(触发类型选择)上触发。如果水平位置控件设置为 0.0 秒 (默认设置),则此时间点显示在中心屏幕上。在触发点之前捕获的波形数据 (显示屏左侧)被视为负时间数据,而在触发之后捕获的波形数据(显示屏右侧)被视为正时间数据。图12. 于 0.0 伏时在通道 1 的上升沿上触发示波器请注意,显示屏顶部附近“填充的”橙色三角形指示触发时间点 (0.0 s) 所在的位置。如果调整水平延迟/位置,此橙色三角形会从中心屏幕移走。中心屏幕上的“空心”橙色三角形 (仅在延迟/位置不是 0.0 s 时才可见)指示使用示波器的默认“中心”参考时延迟设置的时间位置。8 顺时针旋转触发电平旋钮,可增加触发电平电压设置。 9 逆时针旋转触发电平旋钮,可减小触发电平电压设置。增加触发电平电压设置时,应观察到正弦波在一定时间内会向左侧移动。如果减少触发电平电压设置,则正弦波会向右侧移动。最初旋转触发电平旋钮时,水平的橙色触发电平指示器将出现,实际触发电压设置始终显示在示波器显示屏的右上角。如果停止旋转触发电平旋钮,则橙色触发电平指示器将超时,且在几秒钟后会消失。但是,左侧的波形格线区域外侧仍会显示一个黄色的触发电平指示器,以指示触发电平相对于波形的设置位置。10 旋转触发电平旋钮,以将触发电平设置为恰好 500 mV(在中心屏幕上 1 格)。请注意,实际触发电平显示在显示屏的右上角。11 按斜率软键,然后选择下降沿触发条件。现在,正弦波应反转 180 度,波形的下降沿将与中心屏幕同步,如图 13 所示。图 13. 在 + 500 mV 下于正弦波的下降沿上触发12 增加触发电平电压设置,直到橙色电平指示器位于正弦波正峰上方 (大约 +1.5 V)。在正弦波上方设置触发电平时,示波器的采集和显示 (重复图片获取)不再与输入信号同步,因为示波器在此特定触发电平设置下找不到任何边沿交叉。您示波器的显示屏现在与图 14 类似。示波器现在处于“自动触发”模式下。图14. 在输入信号上方设置触发电平时自动触发自动触发是示波器的默认触发模式。当示波器使用自动触发模式时,如果示波器在一段时间 (时间会发生变化且取决于示波器的时基设置)后找不到有效的触发条件(在这种情况下正弦波的边沿交叉),则示波器将生成其各自的异步触发,并开始在随机时间获取输入信号图片 (采集)。由于“图片获取”现在是随机的,而不是与输入信号同步,因此我们看到的只是屏幕中波形的“模糊”画面。此波形的“模糊”画面会提示我们,示波器不会在输入信号上触发。13 按触发电平旋钮,以将触发电平自动设置为约 50%。14 从 Demo1 端子断开通道 1 探头连接。从信号源断开通道 1 探头连接后,现在应看到基线 0.0 V 直流信号。因为有了此 0.0 V 直流信号,我们不再具有边沿交叉,因而示波器不会触发;示波器再次“自动触发”是为了向我们显示此直流电平信号。除了默认的自动触发模式外,示波器还具有另一种用户可选择的触发模式,称为正常触发模式。现在,让我们看一下正常触发模式与自动触发模式有何不同。15 将通道 1 探头重新连接到 Demo1 端子。您应该会再次看到触发的正弦波。16 按 [模式/耦合] 前面板键 (在触发电平旋钮右侧)。17 旋转 Entry 旋钮将触发模式选择从自动更改为正常。此时,您应该看不出显示波形中有任何差异。18 再次从 Demo1 端子断开通道 1 探头连接。现在,您应看到探头断开连接之前发生的最后一次采集 (最后一张图片)。我们看不到自动触发模式显示的 0.0 V 直流电平轨迹。如果选择正常触发模式,则当且仅当 示波器检测到有效的触发条件 (在这种情况下为边沿交叉)时示波器仅会显示波形。19 顺时针旋转触发旋钮,以便将触发电平设置在 +1.50 V(在我们的正弦波上方)。20 将通道 1 探头重新连接到 Demo1 端子。正弦波现在已连接且正在输入到示波器,但是此信号的重复显示在哪里?由于我们使用的是正常触发模式,因此示波器仍然需要有效的边沿交叉,但是由于触发电平设置在波形上方 (@ +1.50 V),因此不存在有效的边沿交叉。正如我们使用正常触发模式看到的一样,对于波形的位置我们没有任何线索,我们无法测量直流电源。21 按触发电平旋钮,以将触发电平自动设置为约 50%。示波器应该开始再次显示重复波形。一些较早使用的示波器将我们今天称为正常的触发模式叫作“触发的”触发模式,实际上可能是此触发模式的更具体的说明性术语,因此在此模式下,示波器仅在发现有效的触发条件时才触发,不会生成自动触发 (异步触发,以生成异步图片获取)。稍显矛盾的是,正常触发模式不是“通常”使用的触发模式,它不是示波器的默认触发模式。通常使用的触发模式为自动触发模式,是示波器的默认触发模式。此时,您可能会好奇要何时使用正常触发模式。当触发事件不是频繁发生时 (包括单冲事件),应使用正常触发模式。例如,如果您将示波器设置为显示非常窄的脉冲,但是如果此脉冲只以 1 Hz 的频率出现 (每秒出现一次),并且如果示波器的触发模式被设置为自动触发模式,则示波器会生成许多异步生成的自动触发,而不能显示罕见的窄脉冲。在这种情况下,您需要选择正常触发模式,这样示波器将等到获取有效的触发事件后,才显示波形。稍后,我们将在今后实验期间连接到这类信号。但是现在,让我们了解有关在噪声信号上触发的更多信息。示波器基本实验#3:触发噪声信号重复正弦波大概是示波器触发的信号中最简单的一种类型。但是,在真实世界中,信号不是如此简单。在本实验中,我们将了解学习如何在嘈杂的环境 (真实世界情况)中触发信号,还将学习如何使用波形平均化消除数字化波形中的噪声。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 如果使用 Entry 旋钮,此时应选择“带噪声的正弦”信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。 6 将示波器的时基设置为 200.0 µs/div。即使示波器的默认设置条件将示波器配置为于 0.0 V 时在上升沿触发,示波器也会在此噪声正弦波的上升沿和下降沿触发,如图 15 所示。示波器实际上仅在上升沿触发。但是,当示波器在正弦波的下降沿触发时,实际上是在正弦波上随机噪声的上升沿触发。图15. 尝试在嘈杂的环境中触发信号7 通过将时基设置为 200.0 ns/div,验证示波器是否在噪声的上升沿触发。8 将示波器的时基设回到 200.0 µs/div。那么,我们如何在仅与正弦波 (无噪声)的上升沿重合的情况下使示波器触发?现在,让我们更多地了解一些示波器的用户可选择触发耦合选项。9 按 [模式/耦合] 前面板键 (触发电平旋钮旁边)。10 按高频抑制软键,以打开“高频抑制”滤波器。向示波器输入的信号实际上被拆分并沿着示波器内部的两条不同模拟路径向下发送。沿着其中一条路径向下的信号将被示波器的采集系统捕获 (图片获取系统)。类似的信号沿着一条单独的路径向下发送,由示波器的模拟触发电路处理。(请参考附录 A 中显示的示波器框图。)选择高频抑制后,由示波器的模拟触发电路处理的信号首先通过 50 kHz 低通滤波器。由于噪声由广泛连续的频率组成,包括高频率分量,因此触发电路随后会“看到”消除/衰减了大部分噪声的正弦波,而沿着采集路径向下发送的信号不受影响 (噪声被保留)。这样,我们就会看到噪声,如图 16 所示,但是示波器的触发电路看不到噪声。但是有一些限制。图16. 使用高频抑制触发噪声正弦波由于高频抑制滤波器基于固定的 50 kHz 低通硬件滤波器,因此不能在更高频率的信号上使用。这种 50 kHz 低通滤波器不影响我们的 1 kHz 正弦波培训信号。但是,如果我们尝试在 20 MHz 噪声正弦波上使用触发高频抑制,则 50 kHz 滤波器将“消灭”噪声和基本 20 MHz 正弦波,使其不可能触发任何信号。但是,我们还有两个选项。11 再次按高频抑制软键,将其关闭。示波器应再次在正弦波的上升沿和下降沿 触发。12 按噪声抑制软键,以打开“噪声抑制”滤波器。噪声抑制滤波器不是基于频率,而是基于幅度。尽管我们讨论了单触发电平,实际上信号必须交叉通过两个电平才能被鉴定为有效触发。这称为“触发滞后”,有时称为“触发灵敏度”。大多数示波器的默认触发灵敏度为 0.5 格。这意味着,输入信号必须摆动至少 0.5 格 (峰到峰)才能被鉴定为有效触发条件。但是,这也意味着,当噪声超过越 0.5 格 (峰到峰)时,示波器会触发噪声。选择噪声抑制时,示波器的滞后被扩展到约 1.0 格 (峰到峰)。对于这种特定的噪声正弦波,大多数时候,1.0 格的触发滞后可以解决我们遇到的问题。您可能会注意到示波器的显示屏上有一些“闪光”现象。这意味着,1.0 格的滞后相当不足。另一种解决方案是使用示波器的触发释抑功能,我们将在实验 #7 期间讨论。从带有噪声的此正弦波的测量离开之前,如果您想要查看此正弦波并对其执行测量,但却没有随机噪声,情况会怎样?13 按高频抑制软键。现在,高频抑制滤波以及噪声抑制滤波都应打开,为我们提供一种非常稳定的触发。14 按前面板波形区中的 [采集] 键 (就在光标旋钮下方)。15 旋转 Entry 旋钮将示波器的采集模式从正常更改为平均。选择平均采集模式时,示波器会对多个波形采集一起进行平均操作。如果信号中的噪声是随机的,则噪声分量会平均出来,因此我们随后可以仅对基本信号分量执行更准确的测量,如图 17 所示。图17. 使用示波器的平均采集模式消除噪声16 使用我们在实验 #1 中学到的测量技术确定以下各项:周期 = _____________频率 = _____________ Vp-p = _____________示波器基本实验 #4:记录和保存示波器测试结果完成各种电路实验作业后,您的教授可能需要您详细描写测试报告。可能需要包括实验报告中测量的图像 (图片)。此外,如果您不能在某个会话期间完成实验作业,则可能需要稍后继续测试。但是,如果您可以从中断的地方恢复,效果会好,您不必重新设置示波器,可能也不必重新采集波形。在本实验中,您将了解如何保存并调用各种示波器文件类型,包括图像、参考波形和设置。对于本实验,您必须有权访问个人 USB 存储设备。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”波形,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 100 ns/div。此时,您应该会看到正弦波的五个周期,如图 18 所示。现在,让我们保存此图像 (图片)、保存波形,并保存设置。图18. 我们要保存以便归档及随后分析的正弦波的五个周期7 将您的个人 USB 存储设备插入示波器的前面板 USB 端口。8 按前面板文件区中的 [保存/调用] 键 (在光标旋钮下方)。9 按保存软键,然后按格式软键。10 使用 Entry 旋钮选择 PNG 24 位图像 (*.png)。11 按保存到(或按下选择)软键,然后使用 Entry 旋钮指向 \usb。12 按文件名软键,然后旋转 Entry 旋钮并为此文件提供名称。现在,我们将其称为“test”。13 旋转通用 Entry 旋钮时,字母数字字符串将弹出。只需拨号到第一个字母(在本例中为“t”),然后按 Enter 软键,或按 Entry 旋钮。14 对此文件名中其余的每个字符重复步骤 #13。15 按删除软键,从默认文件名中删除其余所有字符。16 按增量软键,以关闭自动增量 (框应为黑色)。请注意,如果自动增量已启用,则示波器将自动增加与文件名关联的数字。如果您打算保存多个图像,则这可能非常有用,您无需在每个保存操作之间手动重新输入不同的文件名。17 按下按下以保存软键。您的 USB 存储设备现在应具有与图 18 类似的示波器显示屏的存储图像。文件名应为“test.png”。您可以打开此文件或随后将其插入 Microsoft-Word 文档,以查看它是否真的在那里。现在,让我们来保存示波器的设置条件。18 按下 [保存/调用] 前面板键。19 按保存软键,然后按格式软键。20 使用 Entry 旋钮选择设置 (*.scp)。21 按保存到(或按下选择或位置)软键。22 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。23 按文件名软键。您会看到以前输入的文件名将变为新的默认文件名。由于“设置”文件格式使用其他文件扩展名,因此可以使用相同的文件名。24 按下按下以保存软键。USB 存储设备现在应该具有名为“test.scp”的文件,其中包含示波器的当前设置配置。我们将在以后调用此设置配置。请注意,您还可以将设置保存到示波器内部的某个闪存寄存器。但是,接下来可能使用此示波器的某个学生会用他/她的设置覆盖此存储寄存器。因此,作为学生,使用共享示波器借助自己的个人存储设备保存示波器设置和波形始终是很好的方法。现在,让我们保存参考波形数据文件。25 按下 [保存/调用] 前面板键。26 按保存软键,然后按格式软键。27 使用 Entry 旋钮选择参考波形数据文件 (*.h5)。28 按保存到(或按下选择)软键。29 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。30 按文件名软键。重申一下,我们不需要定义新的名称,因为此文件格式还具有唯一的文件扩展名 (test.h5)。31 按下按下以保存软键。请注意,我们在前面保存 .png 文件类型后,这仅是示波器显示的像素映射。此类文件不能回调到示波器中,而且无法对此类文件中存储的数据执行测量。此类文件以及 .bmp 文件类型主要对归档目的 (如纳入实验报告中)非常有用。但是,我们刚刚存储的“参考波形”数据文件 (.h5) 会将电压与时间数据作为 X-Y 对来保存。此类文件可以回调到示波器中,以便以后进行文件。您还可以将此类文件回调到许多 PC 应用程序中,以便进行更广泛的脱机分析。既然我们已保存了示波器的设置配置,而且还保存了波形 (正弦波的四个周期),让我们看一下是否可以调用这些文件。不过,首先我们会从默认设置开始,目的是破坏您在屏幕上看到的当前设置和波形。32 按下 [默认设置]。33 按下 [保存/调用]。34 按下调用软键,然后按下一个调用软键。35 使用 Entry 旋钮选择设置作为要调用的文件类型。36 按位置(或按下选择或调用自)软键,然后使用 Entry 旋钮指向“test”。 37 按按下以调用软键,或者按 Entry 旋钮。我们应该刚将示波器的设置恢复到其以前的配置。但是,示波器不会保存培训信号的状态。因此,此时我们看到的唯一波形应为基线 (0.0 V) 信号,因为探头的输入中没有出现信号。现在,让我们调用以前保存的波形。38 按调用软键,然后使用 Entry 旋钮选择参考波形数据 (*.h5)。39 按调用自(或按下选择或位置)软键,然后使用 Entry 旋钮指向“test”。 40 按按下以调用软键,或者按 Entry 旋钮。现在,您应该使用以前的设置配置查看我们已存储的正弦波版本 (以及活动 0.0 V 基线信号),如图 19 所示。此时,您可以更改设置 (如果您愿意),还可以继续对此存储的波形执行测量。请注意,保存/调用数据后,您可以随时删除您的 USB 存储设备。图19. 调用示波器的设置配置和波形示波器基本实验 #5:补偿 10:1 无源探头既然您已完成了此示波器培训指南中的前四个实验,应该在一定程度上熟悉了如何使用示波器进行基本电压和定时测量,让我们回过头来再次讨论探测。在本指南的入门部分中,我们简要讨论了探测,并显示了 10:1 无源探头和示波器的输入组合的电子输入模型。探头和示波器的此电子模型在此处再次显示在图 20 中。图20. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图如果您记住了,就说明系统已指导您忽略此电子模型中的电容组件,只考虑阻性组件。当前我们只观察阻性组件时,我们已确定探头的 9 MΩ 探头端部电阻以及示波器的 1 MΩ 输入阻抗建立了 10:1 分压器比率。对于低频或直流电应用,忽略电容元件是比较适宜的。但是,如果您需要测量动态信号 (示波器的主要测量应用),则不能忽略此电子模型的电容元件。所有示波器探头和示波器输入中本身都固有寄生电容。这些包括探头电缆电容 (C 电缆),以及示波器的输入电容 (C 示波器)。“固有/寄生”仅意味着电子模型的这些元件非有意设计,而是真实电子世界中原本就存在的。固有/寄生电容的数量随着示波器的不同和探头的不同而异。但是,如果没有其他的设计电容组件来补偿系统中固有的电容元件,则系统在动态信号条件 (非直流)下的阻抗会从探测系统的整体动态衰减改为不同于所需的 10:1 比率。沿着可调补偿电容 (C 组件)分布其他/设计的探针电容器 (C 探针)的目的是建立与 10:1 的阻性衰减匹配的电容阻抗衰减。正确调整补偿电容时,这还可以确保与 9 MΩ 电阻器并列的探针电容的时间常数,和与示波器的 1 MΩ 输入电阻器并列的固有和补偿电容的时间常数匹配。我们不会花很多时间讨论这一原理,只是连接到某个信号,并了解欠补偿、补偿过度和适当补偿的影响。但是,首先应注意我们会将通道 1 探头连接到前一个实验中的其他端子。1 将两个 示波器探头连接到标记了探头补偿的端子。请注意,这与称为 Demo2 的端子也是同一个端子。2 按下示波器前面板上的 [默认设置]。3 将通道 1 设置为 1.0 V/div。4 将通道 1 偏移/位置设置为 0.0 V(默认设置)。5 按触发电平旋钮,以将通道 1 上的触发电平设置为约 50%。6 按 [2] 前面板键以打开通道 2。7 将通道 2 设置为 1.0 V/div。8 将通道 2 偏移/位置设置为约 +3.5 V。9 将示波器的时基设置为 200.0 µs/div。如果正确补偿了探头,则应在示波器显示屏上看到两个带有平坦响应的 1 kHz 方波,与图 21 类似。现在,让我们调整每个探头上的探头补偿。图21. 使用示波器的 1 kHz 探头补偿信号补偿 10:1 无源探头10 使用小的“一字”螺丝刀,调整位于每个探头主体上的可变电容器。请注意,此调整有时位于一些探头的 BNC 连接端附近。图 22 显示了通道 1 探头(黄色波形)补偿过度的示例,以及通道 2 探头(绿色波形)欠补偿的示例。如果您没有观察到近乎完美的方波,则应重新调整探头上的探头补偿,直到示波器上的波形与图 21 类似。图22. 不当补偿的探头正确调整探头后,只要在此示波器上继续使用这些探头,在下次使用示波器时应该就不需要重新调整它们了。此时,您已完成了本实验的实践部分。如果您赶时间,并需要完成本章中最后一个实验,则应跳到实验 #6,然后读取本实验后面其余部分的内容。计算电容补偿的正确数量如果您面临挑战,请使用以下假设条件计算正确补偿所需的补偿电容 (C comp) 数量:对于计算所需的补偿电容 (C comp) 数量,最早的方法是使 R tip 和 C tip 并联的时间常数 (1/RC) 与 R scope 和 C parallel 并联的时间常数相等。请记住,C parallel 是探头/示波器模型中的三个电容元件的组合。另一种计算方法是使 C parallel 的电容阻抗的 9 倍与 C tip 电容阻抗的 1 倍相等。这将建立电容阻抗产生的衰减常数,与仅阻性网络 (10:1) 产生的衰减常数相同:探头负载除了适当补偿 10:1 无源探头以获得最为准确的示波器测量外,另一个必须要考虑的问题就是探头负载。换句话说,将探头和示波器连接到被测件 (DUT) 是否会改变电路的行为?将任何仪器连接到电路中后,仪器本身 (包括探头)都会成为 DUT 的一部分,并在某种程度上成为信号“负载”或改变信号的行为。如果使用上面列出的电阻和电容的给定值(以及已计算的 C comp 值),我们可以按照单个电阻器和电容器的并联方式将探头和示波器的负载影响通过建模方式合并在一起,如图 23 所示。图23. 10:1 无源探头和示波器负载模型对于低频或直流电应用,负载由 10 MΩ 电阻控制,在大多数情况下,这不应成为问题。但是,如果您探测的是 100 MHz 数字时钟信号,会怎么样?此数字时钟的第 5 个谐波 (用于创建此信号形状的重要分量)将为 500 MHz。现在,应计算由此负载模型的 13.5 pF 电容提供的阻抗,如图 23 所示:尽管 13.5 pF 看起来可能不多,但是频率越高,此负载电容数量就会很大。对于此类较高频的应用,大多数示波器供应商提供了可选的有源探头解决方案,它们具有更低的输入电容 (辅助 pF)。但是,这些类型的特殊探头成本比典型的 10:1 无源探头要高很多。最后,请注意本实验中显示的探头 + 示波器模型非常简单。较准确的模型还包括电感元件。电线 (特别是接地引线)应被视为电感元件,特别是对高频应用而言。示波器基本实验 #6:使用内置函数发生器生成波形除了示波器以外,您还将在各种电子工程和/或物理电路实验中使用大量测试设备,包括电源、数字万用表和函数发生器。函数发生器可以产生大量不同类型/形状的信号,这些将用作电路设计和实验的动态输入。Keysight 的 InfiniiVision 2000 和 3000 X 系列示波器具有内置的可选函数发生器,称为 WaveGen。若要完成这个简短的实验,前提条件是示波器上已正确安装此选件许可证。如果您不知道函数发生器功能是否已被许可并启用,请按 [Wave Gen] 前面板键。如果启用此选件,则波形发生器的菜单将出现。如果没有启用此选件,则您会看到屏幕上出现一条消息,指示此选件尚未得到许可。假设您的示波器具有 WaveGen 选件,让我们开始这一简短的实验,了解如何使用通用函数发生器。1 从示波器断开所有探头的连接。2 将 50 Ω BNC 同轴电缆连接到发生器的输出(电源开关旁边)与通道 1 输入BNC 之间。3 按下 [默认设置]。4 如果您使用的是 Keysight 2000 X 系列示波器,则需要将通道 1 的探头衰减常数设置为 1:1。按 [1] 前面板键,然后按探头软键。按新的探头软键,然后旋转 Entry 旋钮将衰减常数设置为 1.00:1。5 按 [WaveGen] 前面板键 (在通道 1 V/div 旋钮正上方)。6 按设置软键,然后按默认波形发生器软键。请注意,示波器的 [默认设置] 不会更改 WaveGen 的设置。因此,要确保从同一个起点开始,我们还需要发生器的默认设置。7 再次按 [WaveGen] 前面板键。8 将通道 1 的 V/div 设置设为 100 mV/div。9 将示波器的时基设置为 100.0 µs/div(默认设置)。您现在应该看到示波器上的正弦波的一个周期,与图 24 类似。峰峰值振幅为 500 mV 的 1.000 kHz 正弦波是 WaveGen 的默认信号。现在,让我们对信号进行一些更改。图24. 使用示波器的内置 WaveGen 函数发生器10 按频率软键,然后旋转 Entry 旋钮增加或减少频率。请注意,最大频率设置为 20.00 MHz。11 按振幅软键,然后旋转 Entry 旋钮以更改此信号的振幅。12 按偏移软键,然后旋转 Entry 旋钮以更改此信号的偏移。13 按波形软键,然后旋转 Entry 旋钮选择各种波形。请注意,选择方波后,您还可以微调占空比。选择脉冲后,您可以微调脉冲宽度。从此时开始,您可能不会将发生器的输出直接连接到示波器中了。您可能会将发生器的输出连接到电路的输入。随后,您将使用带有探头的示波器监视电路的输入和输出。就到这儿吧!了解使用示波器示波器进行实验测量的更多信息:编辑于 2022-08-04 09:28仪器仪表示波器示波器校准仪赞同 4039 条评论分享喜欢收藏申请-1.5
%����
1 0 obj
<>
endobj
2 0 obj
<>
endobj
3 0 obj
<>/Font<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 521.64 737.16] /Contents 5 0 R/Group<>/Tabs/S>>
endobj
4 0 obj
<>
endobj
5 0 obj
<>
stream
x��}M�e7r�^@��\� (�d� A@eVU�3,`�Y ���p�b���9'x�{-�R�T�݀U����wo��O��O�?�+ϻϧ��J��� ����7 ���u�����י��N^���rN?�.NX� ����O���=[�
�#��@����p��A����F@K@m�pHeo�h�* �T�v�y��up�u/���8S���qP�7�ns�qAc�Mj�D��G ���H�NE����dJ��1BL����)�"�>P��+��s�sLjn*�I�Ng���]
���pk<��Hz>�gQ������s� =�R}�&7�d�"���ID�]j'<�QL���3pR��h\�6:��1��z����E����n�1�<���#Q��J�����
#��2�}�DD�}"<�CC�N9O`b�hP����٨/���c����Դ�)�4h@�Ή�'�j����X+`hG���t
��*�R��b@��r�Ii���3@$�d�N\���Ժ ��4l=�H����4��Q��p��\q������3�")��*@xg�w2����^�\��&�C��^����NZ@��#&FUDi�%��`�Ic�WB�V(w� ː��0��"�L��i?�x~���y t����]&�f0ֵ�X��M+��AO��h�4L=���9�+�r����Aܞ������Q���I+hἆd@�L�6.j%�,�;^7�2c�� `�1@���:��pR�{���9O��_����Y5x p���"���2��j�/�0��Ph�f�N
�S��k3EsoDH�6iC q'�H9~Q���P� �ɢ�����F|<q�Ίɍ��@��` *���PT�@fg�M�&�z� ݡ| �\���<B�Q�&0N�z��a�-> ��� bY��W ��s��n˸%"���1�N� �z6�5���g�m�צ�vm�)���'�}�$D�� E:��fp��_d��6-^� H�F���v���qE�M]��̔@�c+�0�'�3�8e���,L�#�4��˔��/T�f�D� L5����6�]0�×� �����1 ��7�ٵ�}&�r"��텙��@opeh��$ Y�e�du 3sh�b�dV�I;)Q촒�rN��0�����E��d�7}{@�d���0~@t
c��������L$�Nd�4'艀Ȭ�8�Ó /#���_��u��VNl�y���u�;��NB� �cM���5�/!�Ъ�NMm�4�[5� �oy��#����Y���c�-���.ٰЦ&'L�����O���J�ɶ`e��Q��4���ao�)S�6�&'o��LbT�'��`��p{nqt@���̂\�e@���Sh����T�R8���`���N���88���U�/1����qr��lo.����^ f_�XgYO��On�+S�� s�YX=;/�u����[3����-Og�G�5�א.ͦ�ZJ��1\J{���!3 j���J�2����@����������:�B�ۛ�>�� �6���*��YY\)L��z*s[��t;��L�uʵ��R�dkn!�WM+"y���;��wmS�C"�Ĺ�������~�)�i�9[�i�\*��Y\��Ts��q �� �Zk)H����� �3�����ܔ@3Od�*�u��q^��դ*���G� o�Q�4��H©GLT9�Y����UJ����^�����U��AaU��o.1�HU�c�%F� V�y&���M��m�r��_�2���6S!�fE1 ij�{an�0��9'�2�X��O�
���Q����u�Gj
Q0N-�M�U�˄9]+�B�<��+� ]UO�3s�����&[���)�G�\/7,�.'�l'� q5�\��]��k�Vu�pn��@3�3Y#�ˀK���[�ebS�
�&lB�vg�����NB�B�9�b�t�OY_�2A2>�d�!��]W� QR��xP*0��"������̅kRV�� �����zp]����+qM!�{Y��<^���H��Я*����j,�q� �*7�(i����dL��p��`T���a��_5B5k�̢M S�* �(���G���Xk+�X ���7J�R�М�W��I]%�ęĖ�8.e-�ԪB595� 5e����Q�Q���v�|4��� =xܙr��t*�Gt�
\l�ْtW�HZQ�I���H�V� �R����j�TF�R�����.�Ve�Y&0@�lJ)S�����b �Ѥ��D1%'��\� ��⸡��U��Z��;�_��E[B��p�!J���*��]&QBY����(�o����K )�*��3N��2�jĊ�)S���m�*�l� ��SI�&�!~���4���XK(t���AM��й�1�.EPH[��{�!,u��ú�?P%���XTR�����t���wKKˁ�ng�hb�B�Hx*A�GpF<���~�.�o�S��6�T<���4l�� 3V��T�I`H�տ��D�-�K���4e�r2"ѩí�� :L5,�^2H�"�5qvY;ɴ�Q��&͔�m�c�V[�;��2�����<���c�5��2̬BU��j)@�4g��1�r�,Y�1��J�^/�a2�Ur��l�6������`�B��Km�!%t)���-�$���W�� �b��@���/q4�L���zU�����n�9W��R�%��ɇ�-��ԹT2z�^�7�FJ����������;_=����|��Im���t�"ml{g��Jeؙ��\�'0�`���&